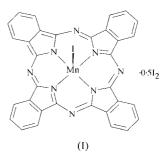
metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Iodo[phthalocyaninato(2–)]manganese(III) bridged by a neutral I₂ molecule

Jan Janczak

Institute of Low-Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław, Poland Correspondence e-mail: janczak@int.pan.wroc.pl


Received 6 May 2004 Accepted 20 May 2004 Online 22 June 2004

The title manganese(III) phthalocyaninate (Pc) complex, *viz*. iodo[phthalocyaninato(2–)]manganese(III) hemi(diiodine), $[Mn(C_{32}H_{16}N_8)I]\cdot 0.5I_2$ or $(MnPcI)_2\cdot I_2$, was obtained from the reaction of pure powdered manganese with phthalonitrile under oxidation conditions of iodine vapour. The phthalocyaninato(2–) residue is not strictly planar and the Mn atom is five-coordinate, having distorted square-pyramidal geometry and residing 0.262 (2) Å above the plane defined by the four isoindole N atoms of the phthalocyaninate macrocycle. The neutral I₂ molecule bridges the iodo[phthalocyaninato-(2–)]manganese(III) molecules, forming a centrosymmetric dimeric structure.

Comment

The present study continues our investigations into the synthesis, characterization and stereochemistry of metallophthalocyaninate complexes, which have been obtained under oxidation conditions of iodine vapour. The I atoms in most iodine-doped metallophthalocyanines form linear chains of symmetrical I_3^- ions, which are usually disordered in the crystal (Janczak & Idemori, 2001). The I atoms can also be bonded directly to the central metal, yielding mono- or diiodometallophthalocyaninate complexes (Janczak & Kubiak, 1999*a*; Schweiger *et al.*, 1998). Additionally, it has been stated that, besides these disordered and symmetrical I_3^- ions (Janczak & Kubiak, 1999*b*; Janczak & Idemori, 2002*a*). Against this background, we present here the crystal structure of the title compound, (I).

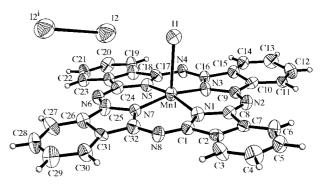
Refinement of the crystal structure of (I), supported by a Raman experiment, clearly shows that this iodo[phthalocyaninato(2–)]manganese(III) complex (Fig. 1) crystallizes as a dimer, with a neutral I₂ molecule forming a bridge (Fig. 2). In the frequency region of 100–500 cm⁻¹, the Raman spectrum exhibits one expected band at ~180 cm⁻¹, for an I₂ molecule which interacts weakly with the axial I atoms of neighbouring MnPcI molecules (Pc is phthalocyaninate), forming a dimeric structure, $(MnPcI)_2 \cdot I_2$. The absence of any observable peak at $\sim 200 \text{ cm}^{-1}$ eliminates pure iodine as an impurity (Anderson & Sun, 1970). The interaction of the I_2 molecule with two I atoms axially bonded to the central Mn results in the population of molecular orbitals with I–I antibonding character, and hence a slight increase in the I–I bond length, a decrease

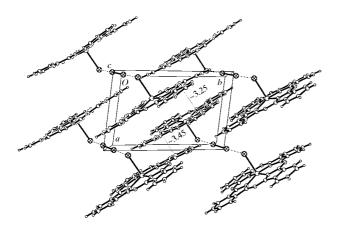
in bond order and constant stretching forces are observed (Cowie *et al.*, 1979; Marks *et al.*, 1976). This Raman spectrum is characteristic of complexes containing weakly interacting I_2 molecules (Teitelbaum *et al.*, 1978, 1980; Mizuno *et al.*, 1981).

The structure of (I) consists of two iodo[phthalocyaninato(2–)]manganese(III) molecules bridged by an I_2 molecule to form a dimer. The Mn atom is five-coordinate, involving the four isoindole N atoms and an axial I atom, resulting in a distorted square-pyramidal geometry for the metal. The Mn atom lies 0.262 (2) Å above the weighted mean plane defined by the four isoindole N atoms of the Pc macrocycle. The phthalocyaninate ring is not strictly planar but has a saucer shape, since the I atom axially bound to the central Mn atom leads to a deviation of the macroring from planarity.

The Pc macrocycles in the dimer are related by an inversion centre located at the centre of the I–I bond of the bridged I_2 molecule. The I–I bond length in the bridging I_2 molecule provides evidence for the existence of neutral I_2 molecules in the crystal that only weakly interact with the axial I atoms of the MnPcI molecules, since it is slightly longer than the I–I distance observed in pure iodine; in the solid state, this distance is 2.715 (6) Å (van Bolhuis *et al.*, 1967).

A search of the Cambridge Structural Database (Version 5.25; Allen, 2002) shows that relatively few structures have




Figure 1

A view of the molecular structure of the independent unit of (I), with the atom-labelling scheme (the I_2 dimer is shown). Displacement ellipsoids are shown at the 50% probability level.

been reported having a neutral I_2 molecule coordinated between two I atoms, and only three are metallophthalocyanine structures: GePcI₂·I₂ (Janczak, Razik & Kubiak, 1999) and CrPcI₂·I₂ (Janczak & Idemori, 2002*b*), in which the neutral I₂ molecules develop polymeric structures, and (FePcI)₂·I₂ (Janczak, Kubiak & Hahn, 1999), which is isostructural with the present Mn complex, (I).

The I–I distance of the bridging I_2 molecule in (I) is comparable with those found in the GePcI₂·I₂ [2.770 (2) Å], $CrPcI_2 \cdot I_2$ [2.773 (1) Å] and $(FePcI)_2 \cdot I_2$ [2.766 (2) Å] systems, three phthalocyaninate complexes with a bridging I₂ molecule between the two I atoms. Besides these complexes, a new iodine-doped phthalocyaninate complex has been reported in which the neutral I₂ molecules interact with unsymmetrical I₃⁻ ions, forming zigzag $\cdots I_3 \overline{\ } \cdots I_2 \overline{\ } \cdots I_3 \overline{\ } \cdots \overline{\ } J_2 \overline{\ } \cdots \overline{\ } J_2$, chains (Janczak, 2003). An interesting example of an I_2 molecule interacting with two I_3^- ions and forming $I_3^- \cdots I_2^- \cdots I_3^-$ aggregates is in the crystal structure of iodine-doped bis(phthalocyaninato)niobium(IV) (Donzello et al., 1998). A neutral I₂ molecule acting as a bridge can also be found in the iodine-doped chloro[phthalocyaninato(2-)]iron(III) complex (FePcCl)₂·I₂ (Palmer et al., 1985). Additionally, the I₂ molecule is present and 'stapled' by two inter-ring C-C σ bonds in the (diphthalocyaninato)niobium(V) complex obtained in an IBr₂ atmosphere. However, in that crystal, the I₂ molecule interacts with the Br atom of the IBr₂⁻ ion via only one I atom, forming $[I-I \cdots Br-I-Br]^{-}$ aggregates (Janczak & Kubiak, 2003).

The I···I distance between the neutral I₂ molecule and the I atom coordinated to the central Mn atom in (I) is a little shorter than the intermolecular distance in pure iodine in the solid state (~3.50 Å; van Bolhuis *et al.*, 1967). This value demonstrates the interaction between the I₂ molecule and the two MnPcI molecules, which are related by an inversion centre to form a dimeric structure. The I1···I2–I2ⁱ···I1ⁱ sequence is almost linear. The Mn···Mn distance in the dimer is 12.045 (2) Å, while the shortest Mn···Mn distance of 5.610 (2) Å is observed between back-to-back partially overlapping neighbouring iodo[phthalocyaninato(2–)]manganese(III) molecules.

Figure 2

The molecular packing in the unit cell of (I), showing the $(MnPcI)_2 \cdot I_2$ dimeric unit. Distances are given in Å.

The two distances of ~3.25 and ~3.45 Å between ring systems indicate the presence of π - π interactions between the back-to-back and face-to-face oriented and partially overlapping Pc units (Fig. 2), since these values are comparable with the van der Waals distance of ~3.4 Å for an aromatic ring system (Pauling, 1960). Pc · · ·Pc interactions overlapping with π - π interactions are a common feature in such structures (Nevin *et al.*, 1987; Terekhov *et al.*, 1996; Isago *et al.*, 1997). The overlapping of π electrons between the Pc rings which form the conduction band (Ibers *et al.*, 1982) is responsible for the relatively high observed electrical conductivity measured on a polycrystalline sample pressed into pellets (at room temperature, the conductivity is 3.3–4.8 × 10⁻⁴ Ω ⁻¹cm⁻¹). Anisotropy of the conductivity and investigations of the magnetic and spectroscopic properties of (I) are in progress.

Experimental

Crystals of the title compound were obtained by the direct reaction of pure powdered manganese with phthalonitrile (Kubiak & Janczak, 1993) under a stream of iodine vapour at 493 K.

Crystal data

~	
$[Mn(C_{32}H_{16}N_8)I] \cdot 0.5I_2$	$D_m = 1.93 \text{ Mg m}^{-3}$
$M_r = 821.27$	D_m measured by flotation in a
Triclinic, P1	CHBr ₃ /CHCl ₃ mixture
a = 8.447 (2) Å	Mo $K\alpha$ radiation
b = 13.051 (2) Å	Cell parameters from 2544
c = 13.218 (2) Å	reflections
$\alpha = 102.11 \ (2)^{\circ}$	$\theta = 3.0–28^{\circ}$
$\beta = 91.61 \ (2)^{\circ}$	$\mu = 2.69 \text{ mm}^{-1}$
$\gamma = 96.81 \ (2)^{\circ}$	T = 293 (2) K
$V = 1412.6 (5) \text{ Å}^3$	Parallelepiped, black-violet
Z = 2	$0.24 \times 0.21 \times 0.17 \text{ mm}$
$D_x = 1.931 \text{ Mg m}^{-3}$	
-	

Data collection

Kuma KM-4 with CCD area- detector diffractometer
detector dimactometer
ω scans
Absorption correction: analytical
face-indexed (SHELXTL;
Sheldrick, 1990)
$T_{\min} = 0.563, T_{\max} = 0.656$
16 124 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.056$	$w = 1/[\sigma^2(F_o^2) + (0.0162P)^2]$
$wR(F^2) = 0.079$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
6769 reflections	$\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$
388 parameters	$\Delta \rho_{\rm min} = -1.07 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

I1-Mn1	2.7312 (11)	Mn1-N1	1.974 (4)
Mn1-N7	1.953 (4)	$I2-I2^{i}$	2.7827 (12)
Mn1-N5	1.969 (4)	I1-I2	3.4238 (10)
Mn1-N3	1.969 (4)		
N7-Mn1-N5	89.51 (17)	N7-Mn1-I1	99.69 (12)
N7-Mn1-N3	164.40 (17)	N5-Mn1-I1	100.08 (12)
N5-Mn1-N3	88.61 (17)	N3-Mn1-I1	95.89 (12)
N7-Mn1-N1	89.30 (17)	N1-Mn1-I1	94.83 (12)
N5-Mn1-N1	165.03 (17)	$I1 - I2 - I2^{i}$	178.97 (3)
N3-Mn1-N1	88.54 (17)		

Symmetry code: (i) -x, -y, 1 - z.

6769 independent reflections

4580 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.045$

 $\theta_{\rm max} = 28.0^{\circ}$

 $h = -8 \rightarrow 11$

 $\begin{array}{l} k = -17 \rightarrow 16 \\ l = -17 \rightarrow 17 \end{array}$

metal-organic compounds

H atoms were placed in calculated positions and treated as riding, with C–H distances of 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *KM*-4 *CCD Software* (Kuma, 2001); cell refinement: *KM*-4 *CCD Software*; data reduction: *KM*-4 *CCD Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL*97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1221). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Anderson, A. & Sun, T. S. (1970). Chem. Phys. Lett. 6, 611-616.
- Bolhuis, F. van, Koster, B. P. & Migchelsen, T. (1967). Acta Cryst. 23, 90-91.
- Cowie, M. A., Gleizes, A., Grynkewich, G. W., Kalina, D. W., McClure, M. S., Scaringe, R. P., Teitelbaum, R. C., Ruby, S. L., Ibers, J. A., Kannewurf, C. R. & Marks, T. J. (1979). J. Am. Chem. Soc. 101, 2921–2936.
- Donzello, M. P., Ercolani, C., Chiesi-Villa, A. & Rizzoli, C. (1998). Inorg. Chem. 37, 1347–1351.
- Ibers, J. A., Pace, L. J., Martinsen, J. & Hoffman, B. M. (1982). Struct. Bonding (Berlin), 50, 1–55.
- Isago, H., Terekhov, D. S. & Leznoff, C. C. (1997). J. Porphyrins Phthalocyanines, 1, 135–140.

- Janczak, J. (2003). Inorg. Chem. 42, 3549-3558.
- Janczak, J. & Idemori, Y. M. (2001). Inorg. Chim. Acta, 325, 85-93.
- Janczak, J. & Idemori, Y. M. (2002a). Acta Cryst. E58, m36-m38.
- Janczak, J. & Idemori, Y. M. (2002b). Inorg. Chem. 41, 5059-5065.
- Janczak, J. & Kubiak, R. (1999a). Pol. J. Chem. 73, 1587–1592.
- Janczak, J. & Kubiak, R. (1999b). Inorg. Chem. 38, 2429-2433.
- Janczak, J. & Kubiak, R. (2003). Polyhedron, 22, 313–322.
- Janczak, J., Kubiak, R. & Hahn, F. (1999). Inorg. Chim. Acta, 287, 101–104.
- Janczak, J., Razik, M. & Kubiak, R. (1999). Acta Cryst. C55, 359-361.
- Kubiak, R. & Janczak, J. (1993). J. Alloys Compd, 204, L7–L8.
- Kuma (2001). KM-4 CCD Software. Version 170. Kuma Diffraction, Wrocław, Poland.
- Marks, T. J., Webster, D. F., Ruby, S. L. & Schultz, S. J. (1976). J. Chem. Soc. Chem. Commun. pp. 444–445.
- Mizuno, M., Tanaka, J. & Harada, I. (1981). J. Phys. Chem. 85, 1789-1794.
- Nevin, W. A., Liu, W. & Lever, A. B. P. (1987). Can. J. Chem. 65, 855-858.
- Palmer, S. M., Stanton, J. L., Jaggi, N. K., Hoffman, B. M. & Ibers, J. A. (1985). *Inorg. Chem.* 24, 2040–2046.
- Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 262. Ithaca: Cornell University Press.
- Schweiger, K., Hückstadt, H. & Homborg, H. (1998). Z. Anorg. Allg. Chem. 624, 167–169.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Teitelbaum, R. C., Ruby, S. L. & Marks, T. J. (1978). J. Am. Chem. Soc. 100, 3215–3217.
- Teitelbaum, R. C., Ruby, S. L. & Marks, T. J. (1980). J. Am. Chem. Soc. 102, 3222–3228.
- Terekhov, D. S., Nolan, K. J. M., McArthur, C. R. & Leznoff, C. C. (1996). J. Org. Chem. 61, 3034–3040.